Panel Scientific and Technical Review Form

(Note: Review comments will be anonymous, but public)

Proposal number: 2001-L215 Short Proposal Title:_Coleman NFH Intakes

1a) Are the objectives and hypotheses clearly stated?

Summary of Reviewers comments:

One "yes"; one "yes/no"; one qualified "yes"

Panel Summary:

Capacity exceeds the hatchery's water right (rights for a quantity at the point of diversion). Hatchery is under re-evaluation regarding operations, and the capacity specification may be premature.

1b1) Does the conceptual model clearly explain the underlying basis for the proposed work?

Summary of Reviewers comments:

Yes

Panel Summary:

Good. Uses watershed approach.

1b2) Is the approach well designed and appropriate for meeting the objectives of the project?

Summary of Reviewers comments:

Yes.

Panel Summary:

The failsafe diversion structure at the Powerhouse is not shown. According to Panel prior knowledge, this is anticipated to be a gravel bar in the river. This is a potentially ephemeral feature, and should not be relied upon. Further, if the gravel bar cannot be relied upon, will a diversion structure requiring passage be built? This is a very significant technical weakness.

Screening Intake One, when a barrier to adults will be built seems completely unnecessary. This should be clarified and justified. Justification for removing Intake 3 is OK. If the powerhouse suffers load rejection, the entire stream (essentially) would be needed for a failsafe water supply. A bypass around the powerhouse (turbine) should be considered instead. This would provide a screened water supply without the need to rely on an ephemeral gravel bar to divert water or a screen. The Panel recognizes the failsafe needs of a hatchery, but another scheme should be investigated.

1c1) Has the applicant justified the selection of research, pilot or demonstration project, or a full-scale implementation project?

Summary of Reviewers comments:

Two "yes"; one "no"

Panel Summary:

See Panel General Comment.

1c2) Is the project likely to generate information that can be used to inform future decision making?

Summary of Reviewers comments:

One "yes"; one qualified "yes"; one N.A.

Panel Summary:

See Panel general comment on fish screen project.

2a) Are the monitoring and information assessment plans adequate to assess the outcome of the project?

Summary of Reviewers comments:

One "yes"; two "no"

Panel Summary:

No provisions or explanations. This is a technical weakness, especially considering the proposed approach (see Panel remarks under 1b2. A hydraulic evaluation should be included. This is a technical weakness of this proposal.

2b) Are data collection, data management, data analysis, and reporting plans well-described, scientifically sound and adequate to meet the proposed objectives?

Summary of Reviewers comments:

One "yes"; two "no"

Panel Summary:

Some construction information will be generated and these data need to be "handled". This is a deficiency. The proposal should be expanded to include evaluation, and this category should be developed in concert. The proposal is inconsistent in this regard.

3) Is the proposed work likely to be technically feasible?

Summary of Reviewers comments:

Two "yes"; one qualified "yes"

Panel Summary:

See above. Relying on a gravel bar for a "failsafe" water supply is highly suspect.

4) Is the proposed project team qualified to efficiently and effectively implement the proposed project?

Summary of Reviewers comments:

Two "yes"; one "no"

Panel Summary:

Perhaps, but it doesn't show up in this proposal. Specific personnel with qualifications need to be given.

5)Other comments

See especially 1b2 above.

Summary Rating

Excellent

Very Good

Good

Fair

Poor

Your Rating: #_CalFed basis: FAIR...could be very good with modifications (see below); Project merit: FAIR (some Panel members rated "poor" due to severe technical flaws)_#

Recommended changes:

- 1) take powerhouse tailwater without screening
- 2) use a load-rejection bypass at the turbine and do **not** rely on water from the river at the powerhouse site.